

Gas Analyser

O₂ and **CO**₂ analysis for metabolic studies and bioprocess control

Real-time understanding of bioprocesses

Immediate readings for culture analysis

Direct deductions as to the condition of the culture can be made during the actual bioprocess from the O₂ and CO₂ readings.

Precision control of bioprocesses

The Iris software allows for the calculation of parameters such as the CO_2 evolution rate (CER), the O_2 uptake rate (OUR) and the resulting respiratory quotient (RQ). This in turn makes it possible to adopt a systematic approach to bioprocess control, to maintain specific metabolic states and to prevent O_2 limitations or substrate limitations.

Compact

With a footprint of just 115 x 235 mm, the gas analyser can be mounted on a workbench or in a rack.

Optional multiplexer function for parallel bioreactors

The multiplexer function allows the INFORS HT gas analyser to read the O₂ and CO₂ levels on up to six INFORS HT parallel bioreactors.

Online data acquisition

Data can be logged, archived, formatted into graphs and used for calculations and control algorithms using the Iris software – from any workstation.

Compatible with other bioreactors

The gas analyser can be operated with both, bench-top bioreactors and in-situ sterilisable bioreactors. The analogue connection also enables analysis of exit gases from bioreactors supplied by other manufacturers.

Technical specifications:

- O₂ reading: 0–25 % (+/– 0.5 % FS),
- zirconium electrolysis cell
- CO_2 reading: 0–10 % (+/–2 % FS),
- infrared spectrometer
- Gas flow: from 0.5 L/min
- Warm-up time: 2 min
- Weight: 2 kg
- Dimensions W x D x H: 142 x 275 x 135 mm
- Footprint W x D: 115 x 235 mm

Example exit gas analysis and RQ control (fed-batch) for an *S. cerevisiae* bioprocess

Example $\rm O_2$ uptake rate and $\rm CO_2$ evolution rate trace during an S. cerevisiae bioprocess

Data can be used for the following:

- Metabolic analysis and bioprocess control
- RQ-based nutrient supply
- Calculation of growth rate (μ)
- Automatic calculation of OUR, OTR, CER, CTR and RQ
- Monitoring of decomposition rate (bioremediation)
- Fly002_en_0615

For more information and your local sales office please visit: **www.infors-ht.com**

INFORS HT

Infors AG Headoffice, Switzerland

Rittergasse 27 CH-4103 Bottmingen T +41 (0)61 425 77 00 F +41 (0)61 425 77 01 info@infors-ht.com